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ABSTRACT 

Let M be a a-finite yon Neumann algebra and a be an action of R on M. 
Let H~(a) be the associated analytic subalgebra; i.e. H®(a) = 
{X E M : spa(X) ___ [0, oo)}. We prove that every a-weakly closed subalgebra of 
M that contains H~(a)  is H~(7) for some action 7 of R on M.  Also we show 
that  (assuming Z(M) A M a = CI)  H~(a) is a maximal a-weakly closed sub- 
algebra of  M if and only if  either H®(a) = {A E M: (I - F)xF = 0} for some 
projection FEM,  or sp(~) = F(t~). 

1. Introduction 

Let M be a a-finite von Neumann algebra and let a = {at:t ~R} be a 

continuous action of R on M, i.e. {at} is a one-parameter group of 

• -automorphisms of M such that, for each x EM,  t ~-->at(x) is a-weakly con- 
tinuous. Write 

n°°(a) = ( x ~ M :  sp~(x) __ [0, ~)} 

where sp,( o ) is Arveson's spectrum. The structure of H~(a) was studied by 

several authors starting with Loebl and Muhly [4] and Kawamura and 

Tomiyama [2]. 
It is known that H~(a) can also be defined as the set of  all x ~ M  such that, 

for every p E M , ,  the function t ~p(a,(x)) lies in the classical Hardy space 

H~(R). In Theorem 3.15 of [4] it is proved that H®(a) is a a-weakly dosed 

subalgebra of M containing the identity operator, such that H~(a) + H®(a) * is 

a-weakly dense in M and such that 
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H®(a) n H®(a) * = M  ~ ( = { x ~ M :  at(x) =x ,  t ~R}).  

I f  M - - L ® ( R )  and at is a "translation by t" (i.e. a,(O)(s)= O(s -  t), 
0EL®(R) s, t ~ R )  then H®(a) is H~(R). In this case it is well known that 
H®(R) is a maximal w*-closed subalgebra of  L®(R). 

As H®(a) can be viewed as a generalization, to a noncommutat ive  setting, of 
H®(R), it is natural to ask when is H~(a) maximal among the a-weakly closed 
subalgebras of  M. 

In the case when M is commutat ive it was shown in [9, Corollary 3.1 ] that 
H®(a) is maximal if and only i f M  ~ -- C. Suppose Nis  a a-finite yon Neumann  
algebra and p is a . -automorphism of  N preserving a faithful normal state. Let 
M be the crossed product determined by N and fl and let a be the dual 
(periodic) action. Then it was shown by McAsey, Muhly and Saito in [6-8] that 
H®(a) is maximal if and only if M"( -- N) is a factor. This result was extended 
by the author in [ 14] to show that, whenever a is a periodic action of  R on M 
and Z(M) n M " = CI (where Z(M) is the center of  M), then H®(a) is maximal 
if  and only if either M " is a factor or there is a projection F ~ M  such that 
H~°(a) = { x ~ M :  (I - F ) x F  = 0}. (This is not precisely the way the result is 
stated in [ 14] but it can be shown to be equivalent to it.) Finally, it was shown 
in [10] by Muhly and Saito that in the case of  a crossed product by an R-action 
(with a being the dual action), H®(a) is maximal if and only i f M  ~ is a factor. 

In the present paper we settle the general case. We prove (Theorem 3.7) the 
following: 

THEOREM. Suppose Z(M) N M ~= CI. H®(a) is maximal if  and only if 
either sp(a) = F(a) (where F(a) denotes the Connes spectrum of  a) or there is a 
projection F E M such that H~°(a) = {x ~ M: (I - F)xF = 0}. 

Note that when a is periodic and Z ( M ) n  M ~= CI, sp (a )=  F(a) if and 
only if M * is a factor ([15, 16.4]) and the same holds for crossed products 
([15, 21.6]). In general, however, a might satisfy F(a) = sp(a) but M* would 

not be a factor. 
Note also that whenever a is an action of  R on a a-finite yon Neumann  

algebra M then it is possible to represent M as a direct integral of  algebras 
{M(x) : x EX} in such a way that a induces an action a(x) of R on M(x) and 
Z(M(x)) n M(x) *(x) -- CI  for almost all x ~ X (of. [16, Theorem 8.23]). 

When H®(a) is not maximal it was shown, in some cases, that the a-weakly 
dosed  subalgebras of M that contain H~(a) have special properties. For 
example, it was shown in [14] that, when ot is periodic, every such algebra is 
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H®(7) for some flow 7 (also periodic). It was also shown, in this case, that there 

is a correspondence (one-to-one, under some mild condition) between such 
algebras and projections of  Z(M~). (This correspondence is described expli- 

citly in Theorem 3.6 of [14].) Related results were obtained in [10] and [13]. 

When the action a is inner than every a-weakly closed subalgebra of M that 

contains H~°(a) is H°~(y) for some (inner) action 7 of R on M. This was proved 

by Larson and the author in [3]. In view of  this result and the result in the 

periodic case it was natural to expect that, in general, every a-weakly closed 

subalgebra of M containing H°°(a) is also an analytic subalgebra (i.e. of  the 

form H~(7) for an action 7 of R on M). In [ 11 ] this result was proved by Muhly, 

Saito and the author in the ease where M ~ is a Cartan subalgebra of M. In the 

present paper we prove this result in the general case. In fact we show the 

following (Theorem 2.19). 

THEOREM. I f  B is a a-weakly closed subalgebra o f  M that contains H®(a) 

then there is an action 7 o f  R on M satisfying H°°(7) = B. In fact, there is a 
projection F E Z ( M )  ~ M a and a one parameter unitary group {v, : t ER}, in 

the center o f  M a, such that, for t E R, 

= {x i f  x E M F ,  

i f x  E M(I  - F). 

2. Algebras containing H~°(ot) 

Let M be a a-finite van Neumann algebra and let a = {a, : t E R )  be a 
continuous action of R on M (i.e. at, +, = a,a,, a _, = a ,-land, for every a E M, 
t ~ a , ( a )  is a-weakly continuous). The analytic subalgebra that is associated 

with a is 
H®(a) = {a E M :  spa(a) _C [0, or)} 

where sp.(. ) is Arveson's spectrum. We shall prove (Theorem 2.19) that every 
a-weakly closed subalgebra B of M that contains H®(a) is H®(7) for some 

continuous action 7 of R on M. In fact, there is a projection F in Z(M) f~ M a 
(where M a is the fixed point algebra of a and Z(M) is the center of  M) and a 

one parameter unitary group {v, : t ER} in the center o f M  a such that 7,(x) = x 

for t E R and x E MF and 7,(x) = v*at(x)v, for t E R and x E M(I  - F). 
For a subset S of  R we write Ma(S) = {a E M :  spa(a) C_ S}. We write B(H) 

for the algebra of all bounded linear operators on a Hilbert space H. For a 
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subset Y c H, [Y] will denote the closed linear subspace spanned by Y. If C is 
a subalgebra of B(H) and L is a lattice of projections in B(H) then we write 

alg L = { T ~B(H)  : (I - P ) T P  = 0 for all P E L  }, 

lat C = {P: P is a projection in B(H) and (I - P)TP = 0 for all T ~  C}. 

By choosing an appropriate representation for M we shall assume, through- 
out this section, that M has a cyclic and separating vector and we write H for 
the Hilbert space on which M acts. 

We can now use Corollary 3.7 of [5] to conclude that, for every a-weakly 
closed subalgebra B of M, B = alg lat B. We shall fix now a a-weakly closed 
subalgebra B of M that contains H~°(a). 

Let P be a projection in lat B _ lat H~°(a). Then, as in the proof of [4, 

Theorem 5.2], let Ft, tER ,  be the projection onto N~<,[M*[s, ~)P(H)].  

Write 
E t - -A{/~ t : tER} and E 2 = V ( P t : t ~ R } .  

Then El and Ez are projections in M'. Write E = E2 -- El. By construction we 
have F, <--Ft when t < s  and F, = A{Ft: t < s } .  Hence there is a spectral 
measure F( . )  with values in the projections on E(H) such that F([t, co))= 
P t -  El for t E R. We define the strongly continuous unitary group U -  
{ Ut : t E R} on E(H) by 

-~ -- I -~0 e~t'dF(s), t ~R.  u, 
d - o o  

Write Kfor E(H). We now view Mas  an algebra of operators on K. For every t, 
s in R we have 

n ' [ t ,  oo)(P, - EIXK) c. (F,+t - E~)(K), 

i.e. M~[t, ~ )  c_ B(K)~[t, oo) where / / i s  the action on B(K) implemented by 
U -- { Ut : t E R}. Using [4, Corollary 2.11] we find that, for x E M, t E R, 

= # , ( x )  = U, xU,*. 

When M is viewed as acting on H we have 

a,(x)E = UtxEU'~t, x E M ,  t~_R. 

Now note that, for s < 0 ,  [Ma[s, oo)P(H)]~_P(H) and, for s > 0 ,  
[Ma[s, oo)P(H)] _ P(H) (as P E lat H®(a)). Hence V{F, : s > 0} _-< e < F0 and, 
in particular, P commutes with {Ft: t ER} and, thus, with { U,: s ER}. 
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Suppose now that a lies in M M alg{P}. Then a lies in M :1 alg{P - El} and, 

for t E R ,  

a t (a ) (P  - El )  = a t ( a ) E ( P  - El )  = UtaEU~t (P - E~) = U t a E ( P  - E l ) U *  

= Ut(P - E O a E ( P  - E l ) U *  =. (P - E I ) U t a E ( P  - El)U'it 

= (P  - E l ) a , ( a ) ( P  -- El).  

Hence a , ( M  M a l g { P } ) = M  N alg{P} for every t E R  and P E I a t B .  Since 

B -- alg lat B ,  a t (B)  = B, t ER.  We therefore have the following. 

PROPOSITION 2.1. Every  a -weak ly  closed subalgebra B o f  M that  con ta ins  

H®(a) is a- invar iant .  

We write .4 = B ~ B*. Then .4 _ M" and .4 is a-invadant.  For a subset 

S -C R we write .4a(S) for A t3 Ma(S ) .  For an element y E M we write rp(y) for 

its range projection. Clearly rp(y) is in M and i f y  E.4, rp(y) would lie in A. 

DEFINITION 2.2. For t ~ R  we define 

ft = I - sup{rp(y) • y ~.4~(t, oo)}; 

qt = I - sup{rp(y) : y CA°( - oo, - t)}; 

gt = sup{qs : s < t}; 

f ® = s u p { f t : t > 0 }  and g ® = s u p { g t : t > O } .  

LEMMA 2.3. For  t > 0 wri te  

r ( t )  -- sup{rp(y) : y EA~( - oo, - t]}; 

a n d  

l ( t )  = sup{rp(y) : y ~ A " [ t ,  oo)}. 

Then ,  f o r  every  t > 0 a n d  s > O, 

r (s )Ma([  - t - s ,  ~ ) ) l ( t )  -C B .  

PROOF. Fix z E M ~ [ -  t - s ,  t + s ]  and P E I a t B  _cA'. Then for every 

x E`4~( - ~ ,  - s] and y E`4~[t,  oo), 

x * y z  ~ M ~ [ s ,  ~ ) ,  g a [  - s - t ,  oo)M~[t,  oo) -C g~[0,  ~ )  _C B. 

Since x, y, rp(x) and rp(y) commute with P, we have 

[x ( I  - P X H ) ]  = [ ( I  - e ) x ( H ) ]  = [ ( I  - e ) r p ( x ) ( H ) ]  -- [ r p ( x ) [ ( I  - P X H ) ]  
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and similarly [ y P ( H ) ] = [ ~ ( y ) P ( H ) ] .  Note also that [ x ( I - P ) ( H ) ] C _  

( I -  P ) (H)  and [yP(H)] c_ P ( H )  since x E H ® ( a )  * C. B* and y E H ( a )  C_ B.  

Since x*zy  E B  and P ~ l a t  B, the subspace [x*zyP(H)] is orthogonal to the 
subspace ( I - P ) ( H ) .  Hence [zyP(H)] is orthogonal to [ x ( I - P ) ( H ) ]  = 

[rp(x)(I - P)(H)]. But [zye(H)] = [z r p ( y ) P ( n ) l .  Thus [rp(x)z r p ( y ) e ( n ) ]  is 
orthogonal to ( I - P ) ( H ) .  This shows that ~ ( x ) z ~ ( y ) ~ a l g { P }  whenever 

x EA' (  -- oo, - s] and y ~Aa[t ,  ~ ) .  Hence r ( s ) z l ( t )~a lg{P} .  Since this holds 

for every P E l a t  B and B = alg lat B,  r ( s ) z l ( t ) E B .  • 

COROLLARY 2.4. For t, s > 0 we have 

(1) ( I  - g s )M~(  - t - s ,  ~ ) ( I  - f )  C_ B ;  

(2) (I - f)M"[0,  t + s) ( I  - g~) C A; 

(3) (I - f)M~[0, t] __ A; 
(4) M~[0, t ) ( I  - g,) c_ A; 

(5) m ' [  - t, oo)(I - f )  _c B; 
(6) (I - g , )m"(  - s, oo) C B.  

PROOF. It follows from I_emma 2.3 that (I  - q,)M~[ - t - r, oo)(I - f )  c_ 

B for every r < s. But then (I  - gs)M"[ - t - r, oo)(I - f )  c_ B for every r < s 

(as g~ > qr). Hence (1) follows. Lemma 2.3 also implies (5) (set s = 0 in Lemma 

2.3) and (6) (set t = 0). We then have 

(I --  f ) M ~ [ 0 ,  t + s ) ( I  - -  gs)  c_ B *  n B = A .  

This proves (2) and, similarly, (3) and (4) follow from (5) and (6). 

LEMMA 2.5. 

point algebra). 

(2) 
(3) 
(4) 
(5) 

( 1 ) For each t ~ R, f and  gt lie in Z ( M  ~) (the center o f the f i xed  

For t < 0, ft -- 0 and, for  t <= 0, gt = O. 

I f  t <= s then f < f ,  and  gt < gs. 

A { £ : s  > t} = f and V{g,: s < t} -- g~ for  every t E R. 

A*[s, ~ ) ( I  - f ) ( H )  C_ (I - f + , ) ( H )  and A"( - oo, - s](I - gt)(H) _ 

(I  - gt+,)(H), s, t ~ R .  

(6) f~ and g® lie in Z ( M  ~) n A' .  

(7) For s > O  and  t ~ R ,  M ~ [ - s , O ] ( I - f ) ( H ) C _ ( I - f t _ A ( H )  and  

M'[0, s](I - g , )(H) c (I  - g ,_ , ) (H) .  

(8) M"( - oo, 01(I - f®) (g )  c_ (I  - f~ ) (H)  and  M"[0, o o ) ( / -  g~)(H)  

( i  - g®) (H) .  

(9) (I  - fo~)(I - g®) lies in Z ( M )  n M ~ and (I - foo)(I - g®)M c A .  
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PROOF. (1) Clearly f and g, lie in A. Since A~'(t, oo) and A*( - 0% - t) are 

a-invariant,  f and gt lie in M ~. For  every unitary operator  v ~ M ~, 

vA"(t ,  oo)v* = A"( t ,  co) and vA"( - oo, - t)v* = A"(  - oo, - t). 

Hence  f and g, lie in Z ( M " ) .  (2), (3) and (4) follow immediate ly  f rom the 

definitions. 

(5) Follows from the fact that 

A"[ s , oo )A"( t , oo) c_C_ A"( s + t,  oo) 

and 
A~( - oo, - s]A~( - oo, - t) __ A"( - oo, - s - t) 

(the s tatement  about  gt and gt+s is first proved for qt, qt+s, and then 

I - gt = A { I  - qr : r < t} is used). 
(6) F rom (5) we have A~[s, oo)( n , ( i  - f ) ( H ) )  ___ n , ( i  - f + , ) ( H )  = 

n t ( i  - f t ) ( n )  and Aa( - oo, s]( n , ( I  - g , ) ( n ) )  c_ n , ( i  - g t ) (H)  for every s E 

R. Hence  A"[s,  oo)(I - f ~ ) ( n )  C_ ( I  - f ~ ) ( n )  and A~'( - 0% - s](I  - goo)(n) C_ 

( I  - g ~ ) ( H ) f o r a l l s E R .  Since both U{A*[s, ~ )  : s E R }  and U{A~( - oo, - s]: 

s E R} are a-weakly dense in A, f® and g® lie in A'. 

(7) I f  t < s, f_~  = g t - ,  = 0 and statement  (7) clearly holds. So assume 

t > s > 0. Then, for x E M~[ - s, 0] and y E A"( t ,  oo), we have xy ~ B ' B *  C_ B* 

and x y ~ M " [ - s , O ] M ~ ' ( t ,  oo)C_M"(t  - s ,  oo)C_B; i.e. x y E A " ( t  - s ,  oo). 

Hence  M~[ - s, 0](I - f t ) (H)  c_ (1 - f _ , ) ( H ) .  The p roof  for gt is similar. 

(8) For s > 0, it follows from part  (7) that 

Ma[  --  S, 

Since U ( M ~ [  - s, O] : s > 

m o (  - o o ,  0 1 ( I  - foo)(n) c_ (I 

0](I - foo)(H) G ( I  - f J ( H ) .  

0} is a-weakly dense in M ~ ( -  oo,0], 

- foo)(H). The p roof  for g® is similar. 

To prove (9) fix t > 0 and let x be in M"[O, t). 

Using Corollary 2.4(3) we have ( I -  f ) x  6 A  and using Corollary 2.4(4), 

(1 - gt )x  C A .  Write F for (1 - foo)(1 - goo). Then 

and 

x F  = x(1 - g t )F  = Fx(1  - g t )F  = F x F  

F x  = F(1 - f ) x  = F(1 - f ) x F  = F x E .  

Hence F c o m m u t e s  with M~[0, t). Since this holds for every t > 0, F c o m m u t e s  

with M~[0, ~ )  and, as M[0,  ~ ) +  M[0,  ~ ) *  is a-weakly dense in M,  F 

commutes  with M.  Also, for t > 0, 
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FM*[0, t] -- F(1 - f,)M*[0, t] _ .4 .  

Hence FM~[O, oo) C_ A and by taking adjoints and using the fact that F E Z(M) 
we have 

FM~( - oo, 0] = M'( - oo, 0]F = (FM[0, oo))* c_ A* -- A. 

It follows that MF c_ A. • 

We shall now assume that (1 - f®)(1  - g ® )  = O. 
We define a projection valued measure Q( . )  on R, with values in Z(M'), by 

Q(t, ~ )  = f®(l - f ) + ( I - f ® ) g , - t ,  tER.  

Since V{Q(t, oo): tER}  =f® + (I -f®)g® =I ,  A{Q(t, oo): t E R }  = 0 and 

V{Q(t, oo) : t > s} = f~(I - A{f :  t > s}) + (I - f~)V(g,_, : t > s} 

= f ~ ( I  - f~) + ( I  - f ~ ) g , _ s  = Q ( s ,  ~), 

the measure Q( . )  is well defined (see [ 15, 15.7] for a similar construction). We 

now define a one parameter group U = { Ut : t ~ R} of  unitary operators in 

Z(M ~) by f_o 
U, = ei~dQ(s), t E R. 

oO 

For t ~ R we let at be the automorphism 

at(x)--- U*at(x)U,, x E M .  

This defines an action o of R on M. 

PROPOSITION 2.6. A _ M °. 

PROOF. For X E A  let pt(x) be UtxU*. This defines an action of  R on A. 

Using I.emma 2.5(5) we see that A'[s, ~)Q(t, oo) c_ Q(t + s, oo) for every s 

and t. It follows ([4, Theorem 2.9]) that, for s ER,  

A"[s, oo) c_ AP[s, co). 

Hence fl -- a on A and, consequently, A C_ M °. • 

LrMMA 2.7. Let x be in M and I, J intervals of R (with closures i, ]). 
(1 ) / f sp , (x )  ___ [a, b] then Spo(Q(1)xQ(J)) c_ - i + [a, b] + Y. 
(2) l f  spo(x) c_ [c, d] then sp,(Q(I)xQ(J)) c_ i + [c, d] - J. 
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PROOF. The proof is a modification of [ 1 5, 1 5.1 2]. Write N for M ®/72 
where F2 is the factor of type/2 and identify it with the 2 × 2 matrices over M. 

Let 

21 x22/ \U,*a,(xn) a,(x29 I 

for (xo)EN, t~R. Then 0 defines an action of R on N. We have 

Ot(Q(°I) °o)=(U,°Q(I) 00)=(exp(_ 0 itT)Q(I) 00) 

where T = f~_® sdQ(s). 
Hence, for every h ELI(R), 

Oh (Q(OI) 00)--(~t( - T)Q(I)O 00) 

where h is the Fourier transform of h. But h ( -  T)Q(I)= 0 whenever 
supp ~ _C R \ - 1. 

It follows that 

sPO ( Q (°i ) 

Similarly 

Since 

we have 

0) /~(t) = 0 whenever h c__ R \  - - [. (t. supp I} 

sP0(00 Q~)) c_ j. 

0 0 0 x (°o o)(o :)(°o 
(o 

spo(Q(I)xQ(J)) = spo 0 Q(I)xQ(J) - 

This proves (1). The proof of (2) is similar. 

LEMMA 2.8. Let C be an a-invariant o-weakly closed subspace of M. 
(1) C is generated by the elements of C with a compact Arveson" s spectrum. In 

fact, there is a net {h~} of functions in LI(R) such that ah,(x)--'x o-weal@for 
every x E M and supp ~; is compact for all i. 
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(2) Suppose x E M  and h EL~(R) such that i~ = 1 on an open set W c_ R. 

Then sp,(x - ah(X)) O W = ~ .  

(3) I f  x E C and W is an open subset o f  R which contains a compact set F ,  

then x = x~ + x2 where xl E C, i = 1, 2, spa(x0 __. W tq sp~(x) and sp,(x2) __. 

( R \ F )  n sp~(x). 

(4) Given x E C with sp~(x) compact and e > O, we can write x as a f inite 

sum Z~_~x~ where for every i there is some t~ER such that sp~(x~)C_ 

sp~(x) f~ [t,, t, + e]. 

(5) Given x E C with sp,(x) compact, t ~ R and e > 0 we can write x = 

x~ + x2 + x3 where x~ ~ C for i = 1, 2, 3, II x, II < 2 II x II, sp.(x,) C_ 
(t - e, t + e), x3EM"(  - oo, t), and x2~M~( t ,  oo). 

PROOF. The proof  o f ( I )  can be found in [15, L e m m a  13.2]. 

(2) Suppose/~ = 1 on W and t Esp~(x - ah(X)) tq W. Then there is some 

f E L ~ ( R )  wi th f ( t )  ÷ 0 and supp f__. W. We have h f =  l a n d  thus h . f =  f a n d  

as(X - ah(x)) = 0. Hence t ~ {s : f ( s )  = 0} contradicting our choice o f f .  

(3) Using [12, Theorem 2.6.2] there is a function h ~L~(R) such that/~ = 1 

on F and supp h __. W. Let xl be ah(x) and x2 be x - xl. Then 

sp~(x~) C_ supp h n sp~(x) __ W and sp~(x2) _ R \ F  

by (2). 
(4) Suppose sp,(x) c_ (a, b), - oo < a < b < oo. Let W = (a - e/2, a + e/2) 

and F = [a, a + e/3] and apply (3) to get x = x~ + y where sp~(xt) _ (a, a + e) 

and  sp,(y)  C (a + e l l  b). Apply (3) again, to y ,  and continue by induction.  

(5) Using [12, Theorem 2.6.3] there is a h EL~(R) such that II h II < 2, 
supp/ ;  _ (t - e, t + e) and h = 1 on some neighborhood of  t, say 

(t - 8, t + 8). Let  xt  = ah(x) and y = x - xv Then  sp~(y) c_ ( - oo, t - 81 U 

[t + 8, oo). Apply (3) with W = (0, oo) and F = [8, s] (where s is such thal 

sp~(x) _c ( - oo, s)) to get y = x2 + x3 as desired. • 

LEMMA 2.9. fooM(1 -- f~) C M°(O, oo). 

PROOF. By L e m m a  2.5(8), f~oM~( - o% 01(1 - f~o) = {0}. Since 

M"[0, oo) + M~( - oo, 0] is a-weakly dense in M [4, Theorem 3.15] it is left to 

show that  f~M[0,  oo)(1 - fo~) c_ M°(O, oo). 

Fix x EfooM"[O, oo)(1 - foo) and set s > 0, t > 0 and 0 < e < ~. Using L e m m a  

2.8(3) we can write x = x ~ + x 2  where x t E M ~ [ O , t + s - 3 e ] ,  x2e  

M~[t + s  - ~, oo), x~ = f®x~(l - fo~)  and x 2 = f ,  x2(1 -fo~). (If t + s  < 3e, 

x = x2.)  N o t e  that 
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f - f_~ -- f~Q(t  - e, t] 
and 

(1 - f ~ ) ( g ~  - g ~ _ ~ )  = ( 1  - f ~ ) Q ( 1  - s ,  1 - s + el. 

Hence,  using I_emma 2.7(1), 

s p . ( ( £  - - g , - o ) )  

c _ [ - t , - t  + e l + [ t  + s - ~ ,  o o ) + [ 1 - s ,  l - s  + e]c_[~, oo). 

Hence ( f  - f-~)x2(gs - g~-~)~M~(O, ~) .  

Also using Corollary 2.4(2), 

( f  - f-~)xl(g~ - gs_ , )E(1  - f,_~)M"[0, t + s - 2e)(1 - g~_~) _ A. 

But f® ~ Z(A); hence ( f  - f_~)x~(g~ - g~_~) = 0. Therefore 

( f  - f_,)x(g~ - g~_~) c_ M°(O, co). 

Since f~ = Z~-o(fk~ - f k - l ) e )  and 

1 - f ~  --(1 - f~)g~ = ( 1  - f ~ )  Z~_o(g,~ --gcm-l~), 

X ~M~(0 ,  oo). • 

PROPOSITION 2.10. Ma[0, co) C_ M°[O, co). 

PROOF. Let x be an element o fMa[0 ,  oo) for which spa(x) is compact  and 

write x~ = xf~, x2 = (1 - f~o)x(1 - foo) and x3 = foox(1 - foo). We shall show 
that x,, x2 and x3 lie in Mo[0, oo); as x -- x, + x2 + x3, this will complete  the 

proof. 

The fact that x3 lies in M°[O, ~ )  follows from L e m m a  2.9. 

N o w  assume that y is an element of  Ma[t, t + e] for some t > 0 and e > 0 

and y = Yf~o. Then, by Corollary 2.4(3), Q(t + e, oo)y = f®[1 - f+~)y EA  and 
by Proposi t ion 2.6, Q(t + e, oo)y ~ M  ° c Mo[0, oo). Using Lemma 2.7 and 

the fact that  y = yf~ = yQ[O, oo), we have 

spo(Q( - oo, t + ely) = Spo(Q( - oo, t + e]yQ[O, oo)) 

_ [ -  t - e ,  o o ) +  [t, t + e ]  + [ 0 ,  oo)___ [ - e ,  oo). 

H e n c e y  = Q(t + e, oo)y + Q ( -  oo, t + e ] y E M O [ - e ,  oo). 

Fix e > 0. Since spa(x0 is compact  we can write (Lemma 2.8(4)) Xl = ~,."_ ~ y; 

where, for every i, y~ =y~f~ and spa(y;) c_ [t~, t; + e] for some t, > 0. As we 
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have just shown, y jEM°[  - e, oo). Hence Xl~M°[  -- e, oo). But this holds for 

every e > 0; hence x~ ~M°[O, oo). 
For x2, consider first an element z o fM' [ t ,  t + e) (for some t > 0, e > 0) such 

that z = ( l - f o o ) z ( l - f ® ) .  By Corollary 2.4(4), z (1 -g t+~)EAC_M°C_  
M°[0, oo). We have 

(I - f®)Q(1 - t - e, oo) -- (I - f®)Q(1 - t - e, oo) = (I -foo)gt+~ 

and 

( I - f ® ) Q ( -  oo, 11 = ( I - f o o ) ( I -  Q(1, o o ) ) - - I - f ® .  

Hence, using Lemma 2.7(1), 

SPo(Zgt+~) = Spo(Q( - oo, 1]zQ(l - t - e, oo)) 

c _ [ - 1 ,  ~ ) + [ t , t  + e ] + [ 1 - t - e ,  ~ ] c _ [ - e ,  oo). 

Therefore, for such z, z ~_M°[ - e, oo). Now, fix e > 0 and write x2 = zm-~ z~ 

where z~ ~Ma[ti, t~ + e) (for some t~ > 0) and z~ -- (1 - f®)zi(1 - f~). We have 
shown that each z~ lies in M ° [  - e, oo) and, thus, x2 lies in M°[ - e, oo). Since 

e > 0 is arbitrary, x2EM°[O, oo). • 

L~.MMA 2.1 1. (1) M°(O, oo) C Ma[0, oo). 

(2) B C_ M°[O, oo). 

PgOOF. (1) Let x be in M°(O, oo) and h ~L~(R) with supp ~ c C_ ( - oo, 0]. 

Then ah(x)~M°(O, oo) n M~( - oo, 0]. (Note that, for a subset S of  R, M°(S)  
is a-invariant since esat = ares for all s, t.) Hence by Proposition 2.10, 

ah(x)*~M¢( -- oo, O) n M*[0, oo) __C_ M*( - oo, O) n M°[O, or) = {0}. 

Thus, ah(x) = 0 for every such h. It follows that spa(x) _ [0, oo). 
(2) Let x be in B and h E L ~(R) with supp ~ _c ( - oo, 0). Note that, since B is 

a-invariant and Z ( M  a) c_ B, B is also o-invariant. Hence eh(x)~-B. Also 

SPo(Oh(x)) C_ supp ~ C_ ( -- ~ ,  0). Hence ah(x)*~_M°(O, oo) and, using 

part (1) and the fact that M~[0, ~)___B, we have ah(X)*EB. Therefore 

oh(x)~-B n B* = A  c_ M °. But then SPo(Oh(X)) C_ {0}. Since sPo(tTh(X)) _ 
( -- o0, 0), spo(ah(X)) = ~ and oh(x) = O. Since this holds for every h ~Lt (R)  

with supp t~ C_ ( - oo, 0), x EM°[O, oo). • 

Now write R for M ° and, for a subset S c_ R, R~(S) will denote R n M~(S). 
Clearly R is a-invadant (and so are the spectral subspaces R~(S)). We also 

know that R contains A. 
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LEMMA 2.12. (l)foRa[0, oo) C_ M a C_A a n d  f ® E Z ( R ) .  

(2) (I - f J M a [ 0 ,  oo) __ A. 

(3) ( I  - f®)R c_ A .  

(4)  ( I  - -  fo)Ra[0, oo)(I - qo) _C A. 

PROOF. (1) Since f ® M ( I - f ® ) C _ M ° ( O ,  oo) (Lemma 2.9), we have 

f , R ( 1  - f ® ) =  {0}. Hence f ® E Z ( R )  and, therefore, foR~[0, oo )=  

foR"[0, oo)f®. For  x CR ' [0 ,  oo) we have (Lemma 2.7(2)), 

spa(foX) = spa(foX f®) = spa(Q(O)fooxf®Q[O, oo)) 

_c {o} + {o} + ( - o] _c ( - oo, Ol. 

Hence foX C M a ( -  oo, 0] n ga [0 ,  oo )=  M a. 
(2) We have, for t > 0, (I - f~)Ma[0, t] -- ( I  - foo)(l - f t )ga [0 ,  t] c_ A (Cor- 

oUary 2.4(3)). Hence (I  - f®)M°[0, oo) _c A. 
(3)  From part  (2) we have (I - f®)Ra[0, oo) _ A. Hence 

R ' (  - oo, 0](I - foo) C_ A .  Bu t  f® C Z ( R  ); hence ( I  - f®)Ra( - oo, 0] _ A. Now, 

R is a yon N e u m a n n  algebra and  it is the a-weak closure o f  Ra[0, oo )+  

Ra( - oo, 0] ([4, Theorem 3.15]). Thus  ( I  - f®)R C_ A .  

(4) Fix x C R a [ O ,  oo). For  t > 0 and s > 2 e  > 0  write x = x i  + x 2  where 

x i C R a [ 0 , s  + t )  and x 2 C R ° [ s  + t - e ,  oo) (Lemma 2.8(3)). Then  

( f t+,  - f t ) x l ( I  - g s ) C A  (Corollary 2.4(2)) and 

spo((ft +~ - ft)x2(l - gs)) - spo(Q(t, t + e]f®x2f®Q[O, oo)(1 - gs)) 

C__ [ -  t - e, - t] + [s + t - e ,  oo)+  [0, oo) C_ [s - 2e, Qo) _ (0, oo). 

Since spo(( f+,  - f t )x2( l  - g,))  C_ {0}, (ft+,  - f ) x 2 ( l  - g , )  = O. Hence,  when- 
ever t > 0 and s > 2e > 0, 

( £ + ,  - f , ) x ( I  - g , )CA.  

As f~ - fo --- Z&o ftk +,U -- fk~, 

( f~  - - f o ) x ( I - - g , ) C A  for every s > 0. 

As inf{g, : s > 0} --  qo, ( f~  - f o ) x ( l  - qo )CA.  

From part  (3), ( I  - f®)x C A .  Therefore ( I  - f o ) x ( l  - g o ) C A .  • 

PROPOSmON 2.13. (1) (I -- qo)M°[0, oo)(I - fo) C_ B. 
(2)  M ' [ 0 ,  oo)fo  _C Mr[0, oo) C B .  

PROOF. (1) Let x = (I  - qo)x( l  - fo )EM°[0 ,  oo) N Ma[ -- t, t] for some 
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t > 0. By Lemma 2.8(5) we can, for every e > 0, write x = x~(e) + x2(e) + x3(e) 

where 

(i) xi(e) = (I - qo)Xi(e)(I - fo )EM°[0 ,  ~ )  for i = 1, 2, 3, 

(ii) l] x,( t )  II < 2 II x II and x l (e )EM~(  - e, e), 
(iii) x2(e)~Me(O, oo) and x3(e)EMe( - oo, 0). 

Then x2(e)6B.  Also 

X3(e )Ege (  - -  ~ ,  0) n M°[O, oo) c Mo( - ~ ,  0] n M°[0,  ~ )  = R.  

Hence  x3(e)~(I  - qo)R~( - ~ ,  0)(I - f o )  c_ A (Lemma 2.12(4)). 

By Corollary 2.4(5), we have x~(e)(1 - f ~ ) ~ B .  Hence  

x - x ~ ( e ) ( f ~  - fo) = x2(~) + x3(e) + x~(e)(1 - £ ) e B .  

Since II x,(e) II < 2 II x II for every e > 0 and f~ - f0 ~ 0 a-weakly as e ---- 0, 
xt(e)(f~ - fo) ~ 0 a-weakly and, therefore, x E B .  

(2) Let x be in M°[0,  oo)fo. Then ( I - f ~ ) x E ( I -  f~)M°[0,  ~ ) f ~  = 0  

(Lemma 2.9). Hence x = f®xfo and 

SPe(X) = sp,,(f®xfo) = SPe(a[o, O0)xQ(O)) 

_ [o, oo) + [o, ~ )  - {o} _ [0, ~) .  

Thus X~Me[O,  oo). • 

Now write & for the action o f  R on M defined by 

~ t ~ - O l _ t ,  t E R .  

Since B* _D Me( -- ~ ,  0] = Me[0, oo), everything that was done in this section 

for B and a can be applied to B* and a. To do so note that, for t e R, 

A~(t, oo) = Aa( - oo, - t). 

Instead o f f  and gt we shall now have 

ft = I - sup{rp(y)  : y 6A~(t ,  oc)} ( = qt), 

t~t = I - sup{rp(y)  : y ~A~( - 0% - t)) ( = f ) ,  

g t = s u p { E l s : S < t }  ( = s u p { f : s < t } ) .  

AS in the discussion preceding Proposi t ion 2.6, we let 

O~(t, oo) = foo(I - ~ )  + (I  - fo~)g~-t ( = goo( I - -  qt) + (I  - g~)g,  _1) 

and 
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(J, = ' : ~  e'dO_.(s). 

Then action 8 will now be defined by 

= 

Finally define the action 0 of R on M by 

O, = ~ r ,  

COROLLARY 2.14. (1) M~[0, ~ )  _C )111°[0, oo). 
(2) M°(O, oo) C_ M"[O, ~). 
(3) B c_ M°[O, ~).  
(4) qoM°[O, oo) C_ B. 

PROOF. (1) Proposition 2.10, when applied to & and B* (in place of a and 
B), implies Ms[0, ~ )  _ M°[0, ~). Hence 

g"[o ,  ~ )  = (M~( -- oo, 0]]* = (ga[o,  ~))* 

_ (M°[0, ~))* = (M°( - oo, 0])* - M°[O, ~). 

(2) Follows similarly from Lemma 2.11(1). For (3) note that Lemma 
2.11(2), applied to k and B*, implies that B* ___ Mo[0, o o ) = M ° ( -  ~,  0]. 
Hence B c_ M°[O, oo). 

Part (4) follows similarly from Proposition 2.13(2) (noting that fo = q0). • 

LEMMA 2.15. For alls, t E R ,  

a, oO, = O ,  oa , .  

PROOF. For x E M and t, s in R, 

a,(Os(x)) = a,(O*s~,(x)O_,)= u*~,(O*,,~(x)O_,)u, 

u?O*,~,+,(x)O_,u, "* * = = U_,U~ a,+,(x)U,U_, = O,(a,(a,(x)). • 

The next result (Proposition 2.16) might be known but I was unable to find a 
reference for it. 

PgOPOSITION 2.16. Let 0 = (Or: t~R}  and a = {at: t 6R}  be two conti- 
nuous actions of  R on M that commute; i.e. Ota, = afltfor all t, s in R. Defim 
fit = Ot ° at. Then 

(1) fl = {fit: t 6R} is a continuous action of  R on M. 
(2) For every a, b in R, 
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M°[a, ao) N M°[b, oo) c_ M#[a + b, oo). 

PROOF. Since 0 and a commute  (1) is obvious. (2) Define an action 
p={p(t,,):(t,s)ER 2} of R 2 on M by p(t,,)=Otas. Take xEM~[a, oo)n 
M°[b, oo ). Then there is a net {hi } of functions in L ~(R) with supp/~i - [a, oo) 
such that ah,(x)-*x a-weakly. Since a and 0 commute,  M°[b, oo) is a- 

invariant. Thus Oh, ~M°[b, oo) for every i. Hence for every i there is a net {k0} 

in Lt(R) with supp/~0 c [b, oo) such that 

ah,(x) 
1 

a-weakly for for every i. It is, therefore, enough to assume that x -- 0kah(y) for 
some y ~ M ,  k, h EL~(R) with supp h C_ [a, oo) and supp ~ _c [b, oo) and 

prove that x EM#[a + b, oo). 
For such x,  

x= f f = f f =,,( ,  

where g(t, s) = k(t)h(t). (Clearly g ELt(R2).) For (p ,  q ) E R  2 we have 

~ (p ,  q ) =  f :  g(t,s)e~e'tPdsdt = f f h(s)k(t)eitPe~dsdt = h(q)l~(p). 

Hence supp~  _ [a, oo) × [b, oo) and thus x ----pg(y)EMP([a, oo) × [b, oo)). 
Now let f b e  in L~(R) with supp f__c_ ( - oo, a + b). For every L > 0 define 

~f((t + s)/2), It -- s I ----< 2L, 
Af t ,  S) 

[0,  otherwise. 

Then fL EL~(R2). For (p ,  q ) E R  2, 

A(p, q)---- f f e'~e~'fL(t -- s)dtds. 

Write w = ~(t + s) and v = ~(t + s) and get 

1 L 

-- fLl L 
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= ~ f ( p  + q) SL_L e-~'¢q-P)dv. 

Hence supp fL _C {(p, q)" p + q < a  + b}. In particular spp(x) N supp fL = 
O.  Hence psL(x) = O. But 

O=psL(x)= f f A(t,s)O ,(x)dt  

L f f f(w)O.+ r.-,(x)awav 

1 I. 
= f ,aAx>av 

Hence, for every L > 0 

1 I ~L J -L o r_,C#Ax))ctv = o. Z 
Taking the limit as L ---- 0 we have//j(x) = 0. Sincefwas arbitrary in L~(R) with 
supp f_C ( - oo, a + b), spp(x) _ [a + b, oo). • 

Let a be the action defined preceding Proposition 2.6 and 0 be the action 
defined preceding Corollary 2.14. Let p be defined as in Proposition 2.16; i.e. 
]~t = trtOt. Then, by Proposition 2.16, 

M°[b, oo) N M°[a, oo) c_ MP[a + b, oo). 

But we also have Ot = P~r_l and at = Pfl-t and p commutes with both t~-.~a_, 
and t ~ 0_t. Hence we can apply Proposition 2.16 to get the following. 

COROLLARY 2.17. (1) MP[a, oo) N M ' (  - oo, -- b] c_ MO[a + b, oo). 
(2) MP[a, oo) ~ M°( - oo, - b] c_ M°[a + b, oo). 

PROPOSITION 2.18. MP[0, oo)= M'[0, oo)N M°[O, oo). 

PROOF. We know that M°[O, oo) N Me[0, oo) c_ MP[0, oo) (Proposition 
2.16). Let x be in MP [0, oo) and let h be in L ~(R) with SUpl~ ~ _ ( - oo, 0). Then 

~h(X)Eg#[o, o0) (~ M' (  -- oo, - b] 
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for some b > 0 .  But, using Corollary 2.17(1), trh(X) lies in M°[b, oo)C_ 
M°(O, oo). Using Corollary 2.14(2), trh (X) ~ Ma[0, ~) .  But we also have trh (X) E 
g ' (  -- oo, 0) C_ g * (  - ~ ,  0]. Hence ah(X)~M ~ n M°( -- ~ ,  0) = (0}. Since 
this holds for every h EL~(R) with supp h _ ( - oo, 0), x~M°[O,  oo). Simi- 

larly we can prove that MP[0, ~ )  is contained in M°[O, ~) .  • 

We are now ready to prove the main result of this section. 

THEOREM 2.19. Let a be a continuous action o f  R on M and let B be a o- 

weakly closed subalgebra o f  M that contains M"[0, ~z) ( = H®(o0). Then there is 
a projection F ~ M ~ tq Z ( M )  and a strongly continuous one parameter unitary 

group (v, : t ~R}  in Z ( M  ~) such that 

(i) BF = MF; and 
(ii) B(I  - F) = Mr[0, oo)(I - F) where 

~'t(x)= v*at(x)vt, t ~ R ,  x ~ M .  

PROOF, Let F be (I - f~)(I - g®). Then F lies in M ~ fl Z (M)  and BF c_ 

M F  c_ AF  c_ BF (Lemma 2.5(9)). This proves (i). Now we can assume F = 0. 

Let a, 0 and fl be as defined above. Then 
(1) (I - qo)MP[0, oo)(I - fo) c_ (I - qo)MO[0, oo)(I - fo) c_ B (Proposition 

2.1 8 and Proposition 2.1 3(1)); 
(2) MP[0, oo)fo C_ Mo[0, oo)fo c_ B (Proposition 2.18 and Proposition 

2.13(2)); 
(3) qoM p [0, oo) _ qoM°[O, ~ )  c_ B (Proposition 2.1 8 and Corollary 2.1 4(4)). 
Hence MP[0, oo) _ B. On the other hand, B _ Ma[0, ~ )  N M°[O, oo) = 

MP[0, oo) (Lemma 2.1 1(2), Corollary 2.14(3) and Proposition 2.1 8). Therefore 

MP[0, oo) --- B. 

We now write ~'t = fit/2. This dearly defines a continuous action of  R on M 
and Mr[0, oo) = MP[0, oo) = B. 

We also have, for t E R  and x E M ,  

7 , ( x )  = = = 

Write vt = (JtnUt/2 to complete the proof. • 

As a corollary we can derive the following result which was proved in [3] 

using different techniques. 
Recall first that a subalgebra C of  a v o n  Neumann algebra M is called a nest 

subalgebra of M if there is a nest 92 of  projections of  M such that  
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C = { x E M :  (I - P)xP = 0 for all PE92}. 

In [4] the nest subalgebras of  M were characterized as the analytic subalgebras 

H®(a) of M associated with an inner action a of  R on M (i.e. for every t ~ R, a t 

is an inner automorphism). The following corollary now follows immediately 

from Theorem 2.1 9. 

COROLLARY 2.20 ([3]). I f  B is a a-weakly closed subalgebra o f  M that 

contains a nest subalgebra C o f  M then B is a nest subalgebra o f  M.  

3. The maximality of H~(a) 

The main result of  this section (Theorem 3.7) proves that (under the 

assumption that Z ( M ) n  M ~= CI) H~(a) is a maximal a-weakly closed 

subalgebra of  M if and only if either sp(a) = F(a) (i.e. Arveson's spectrum of a 

equals Connes spectrum) or there is a projection P ~ M  such that H°°(a)= 

{ x E M  : (1 - P)xP -- 0}. 

As in Section 2, a is assumed to be a continuous action of  R on a a-finite von 

Neumann algebra M. I f0  # e ~ M "  is a projection then a defines a continuous 

action ae of  R on eMe by 

a[ = at [ eMe, t E R. 

Connes' spectrum of a is defined to be 

F(a) = n{sp (a  e) : e is a non-zero projection in Z(M~)}. 

It is known that F(a) is a closed subgroup of  R ([ 15, Proposition 16.1 ]). Thus 

either F(a) = {0} or F(a) = R or F(a) = {n2 : n ~ Z }  for some 2 ~R .  

PROPOSITION 3.1. Assume Z ( M )  n M" = CI. I fsp(a) = F(a) then H~(a) is 

a maximal  a-weakly closed subalgebra o f  M.  

PROOF. If sp(a) = F(a) = {0} then H°°(a) = M ~ = M and deafly H~(a) is 

maximal. Suppose that there is some 2~> 0 such that sp(a) = F(a) = 2Z. Then 

Proposition 16.4 of  [15] implies that Z ( M  ~) = Z ( M ) n  M ~. Hence M ~ is a 

factor (since we assume Z ( M )  n M ~ = CI). If  B is a a-weakly closed subalge- 

bra of  M containing H°°(a) and {ft, g,} are the projection (in Z(M~)) asso- 

ciated with B as in Definition 2.2 then { f  t, g~} - {0, I}. Hence { Ut: t E R} c_ 

CI. 

Therefore, if (I - foo)(I - g®) = O, a = a and B -- M°[O, oo) = H®(a). If 
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(I  - f~ ) ( I  - g~o) ÷ 0 then (I  - f®)(I  - go)  = I and M = B O B*; i.e. B = M 

(Lemma 2.5(9)). 

We now assume that sp(a) = F(a) = R. Suppose t > 0 is such t h a t f  ~ 0 and 

s > 0 is arbitrary. From L e m m a  2.5(7) we have 

Mr[ - s, 0](I - f + s ) ( H )  _C (I - f ) ( H ) .  

Hence,  

( . )  ( I  - f + , ) M ~ [ 0 ,  s l f  = ( 0 } .  

Since Z ( M )  f) M r = C I ,  [ M f ( H ) ] = H .  Assume that f + , , I .  Then 

( I  - f + s ) M f  ~ {0}. Fix e > 0. Then, there is some r ~ R  and y E M " ( r  -- e, r) 

such that (1 - f + , ) y f  v ~ {0}. Write e for the projection onto 

[(t - f + , ) m ~ ( r  - e, r ) f ( H ) ] .  

Since ½s - r E F(a) _ sp(a e), we have, for every 8 > 0, 

eM~(Is  - r - ~, ½s - r + ~5)e ÷ {0). 

Hence  

0 v~ [eM~(Is - r - 8, ½s - r + ~) ( I  - f+~)M~(r  - e, r ) f ( H ) ]  

C_ [eMa(Is - ~ - e, is + 8 ) f ( n ) ]  

___ [(I -- f +,)M~'(~s - ~ - e, is + 6 ) f ( H ) ] .  

Hence,  for every e > 0 and 6 > 0, 

(I  - f + s ) M " ( i s  - ~ - e, ½s + 6 ) f  v ~ {0}. 

By choosing e and ~ small enough we get a contradiction to (*). Therefore, if 

f ÷ 0, t h e n f + s  = I for every s > 0. B u t f  = A{f+~ : s > 0}. Hence { f }  _ CI.  

Similarly, {q~} _ CI  and, therefore, {g~} c CI.  Hence {Ut" t ~ R }  c CI.  

This shows that B = M  (if ( I - f o ~ ) ( l - g o ~ ) = I )  or B = H ° ° ( a )  (if 

( I  - f ~ ) ( l  - go~) = 0 ) .  • 

In order to prove the converse of  this proposit ion we shall have to construct 

a-weakly closed subalgebras of  M that contain H~(a) .  We shall construct such 

an algebra for every non-zero projection e ~ Z ( M " ) .  

Let e be a non-zero projection in Z ( M " ) .  Write et for the project ion onto 

[Mr[0, t i e (H)]  (e, = 0 if t < 0 ) and  define f to be A { e , : s  > t }. Also define gt to 

be I - V{Z" s >_- 0} if t > 0 and g, = 0 if  t _-< 0. Write foo for V{f~ : s >_- 0} and 

note that this is the projection onto [Mr[0, oo)e(H)]. 

LEMMA 3.2. For { f ,  g~" t E R }  as def ined above,  we have  the fo l lowing:  
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(1) For each t ~ R , f  and gt lie in Z (M") .  

(2) I f  t <-_s then f <= f and gt <=g~. 

(3) A { f :  t > s }  = f a n d V ( g t : t  < s }  = g s f o r e v e r y s ~ R .  

(4) For s>=O and t ~ R ,  M 1 - s , O ] ( I - f ) ( H ) C _ ( I - f _ s ) ( H )  

M~[0, s](I - g , )(H) C_ (I  - g ,_ , ) (H).  

(5) 3/"[0, oc)fco(H) C_ fco(H). 

PROOF. 

Hence 
M"[O, s ] f _ s ( H )  c_ f ( H ) .  It follows that 

M~[0, s](I - f ) ( H )  c_ (I - f _~ ) (H) .  

The statement about (gt) is immediate. 

Let ( f ,  gt: t ER} as above and define 

Q(t,  oo) = fco(I - f )  + (I - fco)g, _,, 

and 

(1), (2), (3) and (5) are immediate. For (4) note that 

M"[0, s][M"[0, w]e(n)]  C_ [M"[0, s + w]e(H)]. 

M"[0, s]ew(H) c_ es+w(H) for every w > t - s. 

t ~ R ,  

f _~ emd s U, = Q ( ) ,  t E R .  
co 

and 

Hence 

This defines an action a of R on M by 

a t (X  ) ~-- U ? o l t ( x ) U t ,  t ~ R ,  x ~ M .  

Note that for these action a and measure Q(. ), Lemma 2.7 is still valid. 

LEMMA 3.3. Let e and { f  : t ER} be as above. 

(1) For every s > t and ¢I > 0 

( f  - f ) ( H )  c_ [M"[t - 26, s + O]e(H)]. 

(2) For every a < b < t < s, 

( f  - f ) M " [ a ,  b](I - f _ 4 )  = {0). 

(3) For every b > 0 

(fco - fb)M"[O, b](I - fco) = (0}. 

PRoof. (1) Fix s >_-t and 5 > O. If s < 0 there is nothing to prove (as 

f = f  = 0). I f s  >_-O>t then 
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( f ,  -- f ) ( H )  = f , ( H )  CC_ es+~(H) 

---- [ g~ [0 ,  s + ~ ]e (H) ]  

CC_ [Ms[t - 2~, s + ~]e(H)] .  

H e n c e  we now assume tha t  t > 0. F o r  eve ry  in teger  n > 0 we wr i te  F(n ,  5) fo~ 

the  p ro j ec t ion  on to  [M~[n~, (n + 2)~]e(H)] .  T h e n  F(n ,  ~) lies in Z ( M O .  I f  

lies in M~[0, k~] for  some  in teger  k > 0 t hen  we can  wri te  

k-2 
x = ~ xi where  sps(x/) c_ [i5, (i + 2)~]. 

i=O 

H e n c e  [Ms[0, k 3 ] e ( H ) ]  = V { F ( n ,  3 ) ( H )  • 0 < n < k - 2}. We  n o w  have ,  for 

eve ry  m = > k = > 0, 

etm+l)6 - e~  = V { F ( n ,  g)"  0 < n < m - 1} - V { F ( n ,  ~) : 0 _-< n _-< k - 2} 

_-< V { F ( n , g ) ' k -  1 _-< n < m - 1}. 

T h e r e f o r e  (e(m + I)6 - -  e k 6 ) ( H )  ~ [ m s [ (  k - -  1)~, (m + l ) 3 ] e (H) ] .  

Since  s > t >-_ 0 there  are non-nega t ive  integers  k and  m such  tha t  m > k,  

k~ _-< t < (k + 1)3 and  m3 < s < (m + 1)~. Then ,  f < ecm+l)~ a n d f t  >_- e~  and,  

thus ,  

( £  - f , ) ( n )  c_ [m"[(k - 1)~, (m + 1)3]e (n) ]  c_ [m~[t - 2~, s + die(H)] .  

(2) Fix  a _-< b < t < s. F o r  eve ry  0 < g < ~(t - b) we have  

f~-a+6(n)  D_ es-a+6(n)  = [m~[0, s - a + ~ ] e ( n ) ]  

_ [ms[  - b, - a]ms[t  - 2~, s + 5 ] e ( H ) ]  

(as t - b - 2~ > 0). Us ing  par t  (1) we n o w  have  

f _ a + 6 ( n )  ~_ [Ms[ - b , -  a ] ( f  - f ) ( n ) ] .  

H e n c e  ( I  - f _ ~ + 6 ) M s [  - b, - a ] ( f  - f )  = 0. Th i s  impl ies  (2) by  taking  

ad jo in t s  and  using the  fact  tha t  

v { I  > 0 }  = I  - ^ { I  = I  - 

(3) For b > 0 set in (2) a = 0, to  get 

(f~ -- ft)M"[O, b](I - f~) = {0}. 



Vol. 62, 1988 ANALYTIC OPERATOR ALGEBRAS 85 

As s -"  oo we get (.f~o - ft)M"[0, b](I  - fo~) = {0} whenever t > b. Since 

A(ft:  t > b} = fb we have (foo - fb)M"[0, b](I  - f®) = {0}. • 

LEMMA 3.4. L e t  {ft:  t E R } ,  e a n d  a be as above .  

(1) F o r  every  t > O, ( I  - f )M"[0 ,  t] ___ M ' .  

(2) f:cM"[0, oc)(I - f~) _ M' [0 ,  oo). 

PROOF. (1) For  s > t > b > e > O, 

( f + ,  - f ) M " [ b  - e, b] 

= ( f + ,  - f ) M ~ [ b  - e, b]( I  - f - b )  (Lemma 3.2(4)) 

= ( f + ,  - f A M ~ [ b  - e, b](f~-b+2, - f - b )  (Lemma 3.3(2)). 

Hence, i f x  lies in ( f + ,  - f ) M " [ b  - e ,  b], then (Lemma 2.7) 

sp,(x) = sp~(Q(s, s + e ] x Q ( s  - b,  s - b + 2e]) 

c_ [ - s - e , - s ] + [ b - e , b ] + [ s - b , s - b  + 2 e ]  

__¢_ [ - 2e ,  2e ] .  

We have ( f + ,  - f ) M " [ b  - e, b] c_ M ' [  - 2e, 2e]. 

Since U{M"[b - e, b] : t > b > e} is a-weakly dense in M~[0, t], we have 

( f + ,  - f )M~[0,  t] ___ M ' [  - 2e, 2e] for every s > t > e > 0. 

Since A { f : s > t } = f we have V { f +~ - f : s > t } = f~  - f .  Hence 

(f~ - ft)M~[0, t] ___ M ' [  - 2e, 2e] for all e > 0. 

Hence (f® - f)M~[0,  t] _.C. M ~ for t > 0. For  t = 0 the assertion is trivial. 

(2) For  x EM~[0, ~ )  we have 

sp~(fox(I - f~)) = spo(Q(O)foox(I  - f~)Q(1)) _ {0} + [0, oo) + { 1 } 

c[o, oo). 

Hence foM"[0, oo)(I - f~) __ M"[0, oc). 

For  t _>- 0 and ½ > e > 0 we have (Lcmma 3.3(3)) 

( f + ,  - f ) U " [ 0 ,  oo)(I - fo)  = ( f + ,  - f ) i " [ t  - e, oo)(I - foo). 

(We use the fact that  M"[0, oo) = M"[O, t] + M " [ t  - e, oo); see L e m m a  2.8.) 

Hence, for x E ( f + ,  - ft)M"[0, oc)(I - foo), 
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sp,(x) = sp,(Q(t, t + e]fooxQ(1)) 

c_ [ -  t - e , -  t] + I t -  e, oo)+ {i} 

c_ [1 - 2e, ~ )  

_c [0, ~). 

If follows that ( f + ,  - f)M~[0, ~ ) ( I  - f®) _ M'[0,  ~ )  for all t >_- 0 and e > 0. 

Since f~ - f0 = V{f+~ - f :  t _>- 0} for every e > 0, we are done. • 

LEV[MA 3.5. For e, { f :  t ER} and a as above, M"[0, oo) __C_ Mo[0, oo). 

PROOF. The proof that M~[0, ~)fo~ c_ Mo[0, oo) proceeds almost precisely 

as in Proposition 2.10, using Lemma 3.4(1) instead of Corollary 2.4(3) and 

Proposition 2.6. 
The fact that f~M"[0, ~ ) ( I  - f~o) c_ Mo[0, ~ )  was proved in Lemma 3.4(2). 

It is left to prove 

(I  - f~)M~[0 ,  ~ ) ( I  - foo) _c_ M~[0,  ~).  

But I - f® = Q(1)(I - fo~). Hence, for x EM~[0, ~) ,  

sp,((l - f~)x(I  - f~)) = sp~(Q(1)(I - fo~)x(I - fo~)Q(1)) 

c_{- 1} +[0, oo)+ {1} 

_ [0, ~). 

This completes the proof. • 

We have thus shown that, given a non-zero projection e in Z(M~), we can 
construct an action tr (of R on M) and the algebra M'[0,  ~ )  contains H~°(a). 
We also know that for every t >= 0, (1 - f)M~[0, t] is contained in M" where f 
is the projection onto N{[M~[0, s]e(H)] :s > t}. We shall write B(e) for the 

algebra M"[0, ~) .  

LEMMA 3.6. For every non-zero projection e ~ Z ( M  ~) let B(e) be the al- 

gebra defined above and suppose that for every such e, B(e) = H®(a). I f  e is a 
projection in Z ( M  ~) satisfying M~(a, b)e v~ 0 (where a < b) and e > O, then 

eM~(a - e, b + t)e v~ O. 

PROOF. For every non-zero projection e ~ Z ( M  ~) we have constructed 
{ f : t ~ R }  and they satisfy ( I - f ) M " [ O , t ] C _ M  ~. But, by assumption, 

M"[0,  ~ )  = H®(a) and, therefore, M ~ -- M ~. We have, then, 

(I - f ) g ~ ( o ,  t] = {0}. Write 
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ct = sup(rp(y) : y eM"(O, t]). 

Then ct E Z ( M  ~) and ct < ft for every t > 0 (and every e ~ 0). Hence, for every 

non-zero projection e ~ Z(M~), every s > t > 0, and every non-zero projection 

p <ct we have pM~[O,s]e ~{0} (since ft is the projection onto 

f ]  {[M~[0, s]e(H)] : s > t}). 
Therefore eM~[ - s, 0] p ÷ {0} for all such p and s and all non-zero projec- 

tions e in Z(M"). But this implies that for every s > t > 0 and 0 ~ p < ct, 

[M~[ - s, 0] p(H)] --- H. 
Now fix a non-zero projection e in Z ( M  ~) and an open interval J = (a, b) in 

R satisfying M"(a, b)e ~ {0} and set e > 0. Write e(J) for the projection onto 

[M~(J)e(H)]. Since e(J) ~ 0 (in Z(M~)) we have, for all e > t > 0. 

ctMa[O, e]e(J) ~ 0. 

Let r(J) be the projection onto [ctM~[0, e]e(J)(H)]. Then 0 ~ r(J) < ct. Hence 

and, consequently, 

[M~[ - e, 0]r(J)] = I 

eM"[ - e, O)]ctM~[O, e]M"(a, b)e ~ O. 

Therefore eM"(a - e, b + e)e ~ O. 

We now turn to the main result of  this section. 

THEOREM 3.7. Suppose Z (M)  ¢q M ~ = CI. Then H°~(a) is a maximal  a- 
weakly closed subalgebra o f  M i f  and only i f  either 

(i) sp(a) = r ( , ) ;  

or 
(ii) there is a projection F E M such that 

n~(a)  = {x ~ M  : (I - F)xF = 0}. 

PROOV. We already know that (i) is a sufficient condition for maximality. If 

(ii) holds, then every a-weakly closed subalgebra of M that contains H°~(a) is a 

nest subalgebra associated with a nest n _ {0, F, I} (see [3]). Hence H~(a) is 

maximal. 

Now assume that H~°(a) is maximal. For every non-zero projection e 

Z ( M  ~) we can construct projections {ft, gt : t  ~ R )  and an action a as in the 
discussion following Proposition 3.1. We write B(e) for the algebra Mo[0, oo). 
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Since B(e) 3_ H~°(a) (Lemma 3.5) and H~(a) is maximal, either B(e) = H=(a) 

or B(e) = M.  

Suppose that for some non-zero projection e in Z(M"),  B ( e ) =  M.  Then 

M ° = B(e)  n B(e)* = M (for the action a associated with e). Thus at = id for 

all t ~ R .  Since at (x )=  U*,t(x)Ut, t E R ,  x ~ M ,  we see that at is inner for 

every t E R. That implies [4] that H~(a) is a nest subalgebra; i.e. 

H~(a) = { x ~ M  : (I - N ) x N  = 0 for every NE92} 

for some nest 92 of  projections in M. If92 = {0, I} we are done (take F = 0 in 

(ii)). Otherwise there is a projection F E 92 with F ~ 0, F # I. Then H®(a) C_ 

{x ~ M :(I - F)xF  = 0}. The algebra on the left is different from M since M is 

a factor (this follows from the condition Z ( M )  n M ~ = CI, when a is inner). 

Therefore 
n~(a )  = {x E M  : (I - F )xF  = 0} 

and we are done. 

Suppose now that there is no projection e ~ 0 in Z ( M  ~) such that B(e) = M; 

i.e. B(e)  = H~°(a) for every non-zero projection e ~ Z(M~). We shall show that 
= 

Fix t in sp(a) and ~ > O. Define 

N = s u p { e ~ Z ( M  ~) : e is a projection and M°(t - ~, t + O)e = 0}. 

Then N is a projection in Z(M")  and M~(t - ~, t + O)N = O. Now fix a 

non-zero projection e in Z(M' ) .  Since t ~sp(a),  N ÷ I. For every in- 

teger n define F, to be the projection onto [M"[nO, (n + 2)O]e(H)]. Since 

Z ( M )  O M ~ = CI, [Me(H)] = H. Hence V{F, : n EZ}  = I (as the subspace 

spanned by U{M~[n6, (n + 2)0] : n EZ}  is a-weakly dense in M). There is, 

therefore, some n ~ Z  with F , ~ N ;  i.e. M * ( t -  ~, t + O)F, #: O. Now apply 

Lemma 3.6 to conclude that F,d~t~(t - ~, t + O)F, ÷ (0}. Hence, for some 

and I/in H and x in M"(t - ~, t + ~), 

(xF.~,  F.rl) q: O. 

But we can assume tht F. t /=  yet I' for some y E M ~[n0, (n + 2)t~] and r/'~ H. 
Hence ( ey*xF.~, ti' ) 4= O. This implies that 

eM"[ - (n + 2)~, - mSlM~(t - 6, t + $)F.(H)  4: {0}. 

Hence, 
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eMa(t - 30, t + 3J)e 
~_ eMa[ - (n + 2)0, - nO]M~(t - ~, t + O)M~(nO, (n + 2)~)e ¢: {0}. 

Thus, for every t~ > 0, eM"(t - 30, t + 35)e ¢ 0; hence t ~ sp(ae). Since this 
holds for every non-zero projection e in Z(M~), t ~ F(a). • 
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